
Generalized Data Naming and Scalable State Announcements for
Reliable Multicast

Suchitra Raman and Steven R. McCanne

Report No. UCB/CSD-97-951

June 1997

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Generalized Data Naming and Scalable State Announcements for
Reliable Multicast

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Traditional ARQ-based reliable protocols for unicast (e.g., TCP) as well as multicast (e.g., Horus, RMTP
etc.) use sequential numbering of data units and detect losses from discontinuities in the sequence of
received packets. The Application Level Framing (ALF) model encourages application control over
loss-detection and recovery. With sequence numbers, the application must express its reliability
requirements using sub-sequences of the sequence space. This is both cumbersome and restrictive for
applications that have no a priori knowledge of the data stream. Distributed whiteboard applications,
webcast, and file system multicasting are some examples of applications where data is continuously
generated and receivers cannot predict which sub-sequences must be received reliably. In this paper, we
propose an alternative data naming scheme which enhances the expressibility of applications’ reliability
and ordering requirements. We apply the new data naming scheme to build a framework for light-weight
Scalable, Reliable Multicast (SRM) sessions, and develop a State Announcement Protocol (SAP) for loss
detection. Using simulations, we study the scaling behavior of SAP and show how the protocol scales well
for large group sizes. We also suggest heuristics for certain classes of applications that improve the
convergence times and message complexity of the protocol.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Generalized Data Naming and Scalable State Announcements for
Reliable Multicast�

Suchitra Raman and Steven R. McCanne

June 1997

Abstract
Traditional ARQ-based reliable protocols for unicast

(e.g., TCP) as well as multicast (e.g., Horus [24], RMTP
[15], etc.) use sequential numbering of data units and de-
tect losses from discontinuities in the sequence of received
packets. The Application Level Framing (ALF) [7] model
encourages application control over loss-detection and re-
covery. With sequence numbers, the application must ex-
press its reliabilityrequirements using sub-sequences of the
sequence space. This is both cumbersome and restrictive
for applications that have no a priori knowledge of the data
stream. Distributed whiteboard applications, webcast, and
file system multicasting are some examples of applications
where data is continuously generated and receivers cannot
predict which sub-sequences must be received reliably.

In this paper, we propose an alternative data naming
scheme which enhances the expressibility of applications’
reliability and ordering requirements. We apply the new
data naming scheme to build a framework for light-weight
Scalable, Reliable Multicast (SRM) sessions, and develop
a State Announcement Protocol (SAP) for loss detection.
Using simulations, we study the scaling behavior of SAP
and show that the protocol scales well for large group
sizes. We also suggest heuristics for certain classes of ap-
plications that improve the convergence times and message
complexity of the protocol.

1 Introduction
Widespread deployment of IP multicast [9] and the

MBone [10] has made it possible to carry on large-scale
multi-point communication. Applications like digital au-
dio, video, and whiteboard are gaining popularity as desk-
top conferencing tools, as are other emerging applica-
tions including webcasting [13], file system multicast, dis-
tributed interactive simulation [22], network games [5], etc.
All these applications have common requirements – scal-
able, reliable, flexible multipoint communication. How-
ever, each application differs significantly from the other
in delay requirements, bandwidth characteristics, ordering
guarantees, and degree of reliability.

�This work was supported by ARPA contract N66001-96-C-8508

In an earlier paper, Clark and Tennenhouse [7] pre-
dicted that numerous, heterogeneous distributed applica-
tions would emerge and protocol designers would have to
design network protocols with this in mind. Their solu-
tion to overcome heterogeneity in applications was to in-
volve the application in protocol decision making, which
they called the Application Level Framing or ALF model.
Their work stressed the need for a presentation layer, but
left it as an open issue to design, implement and evaluate a
generic system for achieving this.

In retrospect, a transport protocol like TCP, whose de-
signers adopted the one size fits all approach, has had to
be retrofitted against each new type of network technol-
ogy ranging from wireless [2] to satellite links, and each
new application, e.g., T-TCP [3] for WWW transport. The
ALF or framework approach has been suggested for re-
liable multicast [12]. While previous work on the scal-
able, reliable multicast protocol suggested an architecture
for a framework-based approach, no comprehensive set of
mechanisms was specifically proposed. In this work, we
propose generalized data naming, a key component of the
ALF model.

The rest of this paper is organized as follows: Section 2
explains the need for generalized naming in the ALF model.
The details of the naming scheme are described in Section
3. Section 4 shows how generalized data naming can be
used in a framework for reliable multicast. Extensions to
the scalable, reliable multicast protocol are discussed in 5.
Section 6 presents simulations of the new algorithm under
various scaling scenarios. We survey related work in 7 and
conclude in 10.

2 ALF and Data Naming
In traditional transport protocols such as TCP for uni-

cast and RMTP [15] for multicast, the data naming is tightly
coupled with the error control. A sequence number is the
minimum amount of information that is required for error
detection and recovery in the absence of any other informa-
tion from the application. However, the ALF model rec-
ommends application participation in error detection and
recovery. For applications to express their reliability and
ordering requirements, simple sequence numbers are often

1

cumbersome and sometimes insufficient.
For example, consider the problem of file system mir-

rorring, where updates are made to a master copy and need
to be propagated to all the mirrors. The current solution
is an offline approach that involves collapsing a structured
file system into a linear stream of bytes, using the UNIX
utilitytar or some equivalent, and unicasting the resulting
stream to multiple mirrors. This method suffers from two
defects: mirror copies can be out of date for periods of time
depending on the frequency of updates. For continuously
evolving file systems this delay is often undesirable. This
method also makes inefficient use of bandwidth because it
transmits an entire copy of the file system by unicast instead
of multicasting the changes. A different approach to file
system mirroring is an online, instantaneous approach us-
ing reliable multicast and selectively choose the portions of
the file system that require updates or repair using a generic
naming scheme.

Another, more recent, example of a multicast applica-
tion that can benefit from application level participation in
error detection and recovery is distributed whiteboard ap-
plication. The LBL wb [16] application uses a two-level hi-
erarchy of pages and drawing operations to structure data.
In order to enhance scalability, the application participates
in error detection and recovery.

In the context of receiver-driven reliable multicast pro-
tocols such as the Scalable Reliable Multicast (SRM) proto-
col, where the session data is assumed to exist in the session
at any given time requires an unlimited amount of buffering
in the transport protocol. ALF pushes this responsibility to
the application and the transport protocol can query the ap-
plication, using upcalls [6], to retrieve the missing data. In
order to enable application participation via upcalls, there
is a need for a common syntax that both the applicationand
the transport understand.

3 Hierarchical Naming of Application Data
Units

Hierarchical naming is sufficiently general for most ap-
plications of interest. We use filename- or URL-like names
for each application data unit (ADU). Hierarchical naming
allows data transmission from one part of the name space to
be interspersed with transmission from another. With this
extension to traditional reliable protocols, we need addi-
tional mechanism to detect and recover from errors. Each
application can also map data units into the hierarchical
data space supported by the transport protocol. This map-
ping is flexible and under application control. The new
naming scheme provides a common syntax that both the ap-
plication and the transport protocol can reason about. To
see how hierarchical naming improves expressibility of ap-
plication requirements and enables application control in
protocol functions, consider the case when a MediaBoard

Makefile

etc

mash

σ = h(4, 68)

bin usr

src

/usr/src/Makefile : 3

σ = 4

1 2 3 4

σ = 68

1 2 ... 68

user@hearst : /

Figure 1: Example illustrating containers

[20] wants to selectively repair losses on the current active
page(s). With the new naming scheme, expressing these re-
quirements translates added flexibility to the application in
responding to the transport protocol’s notification of losses
of data units other than the current active page.

3.1 Containers
Very often most applications of concern request reliable

and ordered delivery at some granularity of data units. To
provide a default behavior for such applications, the name
space allows containers which are ordered sequences of
data blocks, at the lowest-level of the hierarchy. Figure 1
illustrates this concept.

We also associate with each node of the data tree, a sig-
nature. The function of the signature is to map a data tree
into a fixed length quantity. The signature of a node is de-
fined recursively as follows

�(n) =

(
last ; n is a container:

H(�(c1); : : : ; �(cN)) ; c1; : : : cN are

children of n

(1)
For leaf-level containers, the signature is the last se-

quence number in its sequence. For internal nodes, the sig-
nature is computed as a hash function of the signatures of
its children. A good example of a hash function that is suit-
able for this is MD-5 [21]. The likelihood of mapping two
different trees to the same hash value is vanishingly small.
This feature of MD-5 makes it well-suited for the purpose
of representing the tree as a unique (with high probability)
fixed length quantity.

2

A problem with long ASCII ADU names is that they in-
cur a large per-packet overhead, especially for small pack-
ets like those in MediaBoard [20]. We propose a solution
to this problem in the following sections.

3.2 Container Descriptors
Each container is mapped to a fixed length container de-

scriptor and used as an identifier in packets. Explicit bind
messages are used to disseminate the mapping information
to receivers in the session. The container descriptor is as-
signed by the source that generated it.

Assigning container descriptors deterministically has
the following inconsistency problem. Consider the prob-
lem of source crashes, where a source fails after generating
some ADUs. Assume also the same source recovers from
the failure and re-joins the session. New ADUs generated
re-use the container descriptors that were already created
duringan earlier incarnation in the session. In order to over-
come this inconsistency problem, each source picks an ini-
tial sequence number randomly. An identical problem in
TCP is solved in a similar manner using a randomized Ini-
tial Sequence Number (ISN) [23].

In order to survive network partitions and avoid wrap
around, we make the container descriptor a 32-bit integer.
This can sustain network partitions of about 11 hours on the
average for a session using 128 Kb/s on the average, and
200 B ADUs, typical of whiteboard applications.

4 Naming and Reliable Multicast
Floyd et al. [12] proposed the ALF model for light-

weight sessions and scalable, reliable multicast. Although
the application and the transport protocol were closely cou-
pled in wb, the implementation lacked a generic framework
for light-weight sessions. With generalized data naming it
is possible to develop a customizable framework for appli-
cations that desire reliable multicast.

SRM uses two mechanisms to recover from losses –
receiver-initiated repair requests, and source-initiated ses-
sion announcements. Repair requests are used to recover
from losses that can be detected by the receiver, from a dis-
continuityin the sequence numbers. If the last few bytes are
lost in a transmission, receivers have no way of discovering
such a loss on their own. Session announcements are peri-
odic messages, containing the last sequence number trans-
mitted so far, that a source multicasts to the session. Re-
ceivers use this information to recover from tail losses.

In order to use generic naming for light-weight receiver-
driven reliable multicast, we need a different mechanism
for discovering losses. We develop a new State Announce-
ment Protocol (SAP) for recovering from tail losses in a
container, losses of whole containers or branches of the
ADU tree. The SRM repair request mechanism is used to
recover from losses within a container.

5 State Announcement Protocol
SAP is designed to discover the location of losses that

the receiver cannot deduce otherwise (i.e., lost containers
and tail losses within a container). It uses the signature of
the tree to determine the location of a loss. The source ini-
tiates the protocol by multicasting an UPDATEmessage pe-
riodically. 1 The UPDATEmessage carries the signature of
a node in the ADU tree and a list of signatures and labels of
its children.2

A receiver that hears an UPDATEmessage compares the
value of the signature advertised in the packet against its
own. If there is a mismatch, the receiver determines which
children nodes conflict and multicasts a QUERY message
for those nodes. The source, or any ELIGIBLE receiver
can respond to this message with a new UPDATE. If the re-
ceiver mismatches on a leaf-level container, (i.e., last
6= signature), a repair request is scheduled for the inter-
val [last , signature]. The receiver also advances the
right edge of the container to the value just received in the
UPDATE message. This is necessary to avoid detecting the
same loss more than once. The repair request machinery is
persistent and eventually repairs the loss.

This is shown below in pseudo-code.

Agent/Message/SRM SAP receive p
f

...
$self parse p;
...
set local [$self get-hash $name]
if f$local != $sig g f

if f$self isleaf $name g f
Schedule SRM RREQ
$self sched rreq [$local, $sig]
set eligible 0
return

g
Schedule QUERY message for
offending child
set child [$self cmp $name]
$self sched query $name /$child]

g else f
set eligible 1

g
g

5.1 Backoff and Suppression
The SAP protocol, like SRM repair requests, multicasts

everything. In order to avoid multiplemembers from multi-
casting the same message (UPDATE, or QUERY), the proto-
col uses a technique similar to SRM. Each message is held
back for a random amount of time depending on the RTT to
the source. This gives a chance for members to suppress a

1To avoid synchronization between different sources in a session, we
randomize the period. [11]

2If the maximum packet length cannot accomodate the entire list, the
source may split this information across more than one packet.

3

Send QUERY, Set timer T

Timer T fires

Backoff Don’t Backoff

Figure 2: Modification to member’s state machine to avoid
false backoff

message if an identical message is heard. For very large-
scale sessions, however, multicasting every control mes-
sage to the entire group consumes precious bandwidth, and
is unnecessary if the number of members experiencing a
given loss is small and localized. In order to limit the traf-
fic, local recovery schemes may be used to limit the scope
of state announcement messages.

With backoff and suppression, each receiver sends a
query only if it has not already heard an identical one. If
a receiver does hear an identical query from another partic-
ipant in the group, the timer for that query is exponentially
backed off. The exponential backoff strategy works well if
suppression works perfectly and there are never any dupli-
cates. If more than one copy of a message are multicast,
members backoff their timers more than is necessary. This
condition of false backoff can be solved by extending the
state machine of each member with the extra state Don’t
Backoff, shown in Figure 2. When a query has just been
transmitted or suppressed suppressed by an identical mes-
sage, the pending query moves to stateDon’t Backoff,
where it does not react to similar query messages. The tran-
sition back to the Backoff state happens when a timer ex-
pires. The value of the timer is set to the perceived maxi-
mum round-trip time to any host in the session.

In response to a query, each receiver sends the current
hash value of the requested node from the local tree. It is
possible that some members match in a previous update,
but have lose subsequent data and updates due to transient
congestion. To prevent a member with an out-of-date tree
from responding to queries from more up-to-date receivers,
each message carries a timestamp. Each receiver main-
tains a timestamp per tree. The original source timestamps
its update messages with a local timestamp. If a receiver
matches at the root of the tree it advances its timestamp
to the timestamp on the update message. The receiver in-
cludes the tree’s timestamp with each update message. To
avoid sending stale updates, a receiver refrains from re-
sponding to a query if the local timestamp is older than the
timestamp on the query.

5.2 Heuristics for Announcements
The recursive descent method described above takes

time proportional to the depth of the tree and the average
RTT to converge. Heuristics can be applied in order to im-
prove the convergence time. The recursive descent proto-
col described above does not use application-level informa-
tion in selecting the contents of update messages. There are
several application-level policies that can be invoked at this
stage to determine what update information to send in each
packet.

Working Set Approach
A heuristic used by wb is to send updates from the cur-
rently active pages. This heuristic can be generalized
to tree-structured data. Only those banches of the tree
that have had recent activity are updated. When a new
receiver joins the session, the entire name space needs
to be discovered. By selecting the right branches to
query, the receiver can improve the latency for those
data items. This heuristic is general enough for the
transport protocol to carry on independently of the ap-
plication. In addition to the existing mechanisms, this
heuristic would require SAP to maintain a working set
of containers, and age containers from this set as new
active containers get touched. Each periodic update
message sends updates for containers from the work-
ing set.

Skipping Long Chains
If the source encounters a chain of nodes at some stage
during the descent, the chain can be skipped and the
signature of the first higher degree node can be trans-
mitted in the update message. Since all messages are
stateless, and contain all the information required for
lookup, this does not affect the receiver that sent the
query. We evaluate the relative performance improve-
ment with this scheme in the following section.

6 Performance Evaluation
We used simulations to study the behavior of SRM with

SAP. In this section, we present the methodology and re-
sults of simulations.
6.1 Extensions to ns

We studied the behavior of SRM in combination with
SSAP using simulations. The simulations were written in
ns [18] written in C++ and Tcl/Tk. At the time we started,
ns did not have a built-in reliable multicast module. We
implemented SRM with scalable repairs and responses. ns
has a split software architecture with objects living in C++
or Tcl/Tk [19] or both. We implemented an SRM Agent
module that runs the basic SRM timer mechanisms with
suppression and backoff. The naming data structure (k-ary
trees, with ASCII labels at each node) was implemented in

4

C++. 3. The SAP protocol was implemented in OTcl [25],
since OTcl is convenient for prototyping various policies.

The data for the session was from randomly generated
traces. In all our experiments we used one source. Inter-
arrival times for session data were picked from a uniform
random distribution. We used random trees with sizes vary-
ing from 15 to 50 nodes. An example of the 15-nodes topol-
ogy is shown in figure 4. Cross traffic was generated us-
ing TCP connections running ftp. On the average we main-
tained one congested link per 4-5 nodes. ns packet traces
provided information on packet drops. A single run of 100
seconds with a 45-node toplogy took about 20 minutes of
real time on a 200 MHz Pentium with 64 MB of RAM. NFS
and disk I/O were the bottleneck. In order to stress test SAP,
we restricted all containers to have a maximum sequence
number of exactly 1. In this case, each packet drop trans-
lates to the loss of a container and can be recovered only
with state announcement messages.

Source

Receiver

Source

Congested Link

Figure 4: Example simulation topology

6.2 Metrics
We describe the main metrics we employed to evaluate

the state announcement protocol and its variants.

Convergence
Convergence is related to the elapsed time from the in-
stant at which a packet is dropped in the network (as a
result of overflow at a router queue) to the instant that
a receiver receives the packet. We measure the worst
case convergence time in our simulations, i.e., the time
from the drop to the instant the last receiver repairs the
loss. Recall that the convergence time has three com-
ponents, the average waiting time for the first update
from the source, the time taken to discover the location
of the loss using SAP, and the recovery time using re-
pair requests and replies using SRM repair requests.

3The extensions to the simulator and the scripts used in this project are
available at http://www.cs.berkeley.edu/s̃uchi/research/srm/ns.tar.gz

In all the experiments, the number of losses was kept
constant. In an initial implementation of the protocol,
a receiver would discard a packet if the timestamp on
the packet was earlier than the current timestamp on
the corresponding ADU tree. However, for small val-
ues of the SAP announcement period, this results in
thrashing. The period is too short for the SAP proto-
col to descend to the leaf-level containers to schedule
a repair request. For small values of the update period
(< 0:7s), the session never recovers from container
losses. We changed the protocol after observing this
effect to reject old packets only if they were updates.
For query packets, the SAP protocol simply sends its
current view of the requested node.

Figure 6.2 shows the convergence behavior of the state
update protocol with varing periodicity of updates. At
small values of the period, SAP updates and queries
consume a large amount of the session bandwidth, fur-
ther increasing congestion on the bottleneck link. This
combined with premature packet discard, results in
large convergence times. The number of packets re-
covered in a given amount of simulation time is also
small for high frequency state announcements, as seen
in Figure 6.

There is a tradeoff between the amount of bandwidth
expendable on control messages such as updates and
queries, and the sluggishness of the protocol in dis-
covering and reacting to losses. When the number of
sources in the session is increased, the share of band-
width available to a single source drops. The operat-
ing point on the curve in figure 6.2 depends on the frac-
tion of control bandwidth that the source is entitled to.
4

Scalability with session size

Our metrics for scalability are the number of copies
of a message seen in a session, which is a measure of
goodness of suppression. We also measured conver-
gence times with increasing session size.

Effectiveness of Suppression
The chief concern with multicasting control
messages such as repair requests, state updates
and state queries is the amount of bandwidth
consumed in very large session sizes. In order to
evaluate the effectiveness of suppression in SAP,

4Later in the paper, we describe how application-level receiver interest
can be used as a hint in allocating bandwidth between different sources.
This requires that the receivers send back status reports to the session in a
scalable way.

5

SRM_Agent

ADU_Tree

SRM_Source SRM_Source SRM_Source

ADU_Tree

SRM_Agent SRM_SAP

C++

OTcl

Pending queries

Figure 3: SRM and SAP agents in ns

0

2

4

6

8

10

12

14

0 2 4 6 8 10

C
on

ve
rg

en
ce

 T
im

e
(s

ec
on

ds
)

State Update Period (seconds)

Convergence of SAP for a 15-node topology

Convergence Time (s)

Figure 5: Convergence of SAP with decreasing frequency
of updates

we looked at the number of copies of each con-
trol message multicast to the group. Figure 7
shows this behavior as the group size is scaled
up to 50 nodes. For SAP updates, the average
number of copies per message was about 3, and
remained approximately constant with increas-
ing session sizes. On the average, about 2 copies
of a query message are transmitted to the ses-
sion. This too, remains roughly constant with
large group sizes.

From runningseveral simulations for each topol-
ogy, we observed that the success of suppression
depends heavily on the choice of timers. This
in turn relies on accurate RTT estimators. For

0

2

4

6

8

10

12

14

0 2 4 6 8 10

N
um

be
r

of
 lo

ss
es

 r
ec

ov
er

ed

State Update Period (seconds)

Convergence of SAP for a 15-node topology

Average number of losses recovered

Figure 6: Number of packets recovered in 100 seconds of
simulated time

very large sessions, on the order of millions, this
involves maintaining heavy-weight state at the
end-points. However, with local recovery, and
about 50 nodes per local region, suppression en-
sures that a small constant number of messages
will be transmitted to the local group.

Convergence Times
Figure 8 shows the convergence behavior of the
protocol with increasing session size. In each
of these simulations, the period of the session
timer was varied between 5 and 8 seconds. From
the graph we see that the convergence time does
not change very much as we increase the ses-
sion size. The convergence time is dependent on
the SAP announcement period, the depth of the

6

0

2

4

6

8

10

12

14

15 20 25 30 35 40 45 50 55

N
um

be
r

of
 c

op
ie

s

Session size

Suppression of SAP messages

Ave. number of copies of QUERY messages
Ave. number of copies of UPDATE messages

Figure 7: Suppression of State Announcement Messages

ADU tree (in the absence of heuristics), and the
backoff timers used during repair.

These experiments were performed for a single
source. With multiple data sources, and in the
absence of congestion-control or rate-control,
the likelihoodof congestion is higher. This could
potentiallylead to greater losses in the network
and cause the discovery-cum-repair process to
take longer. The right solution in that case is to
somehow signal this condition to the source and
throttle its sending rate. At the time of this writ-
ing, there have not been conclusive studies on
congestion control.

Heuristics

We implemented the short circuit heuristic de-
scribed earlier in section 5.2. For data spaces
with average width 10, and depth 13, we see
that the convergence times are better with the
heurictic. Recall that the overhead is composed
of 3 components – time to receive next state an-
nouncement, time to discover loss, and the time
to repair it. The short circuit algorithm reduces
the second component of the delay. We see an
improvement of about 20% in delay with this
scheme.

7 Related Work
There has been a lot of recent and ongoing work in

reliable multicast. Several groups have proposed to use
a generic naming scheme. Specifically, a recent Internet
draft [8] on RMFP proposes a two-layered data stream with
OIDs and sequence offsets. However, each object simply

0

5

10

15

20

15 20 25 30 35 40 45

C
on

ve
rg

en
ce

 T
im

e
(s

)

Session size

Convergence times in large sessions

Spread in convergence times
Average Convergence Time (s)

Figure 8: Convergence with increasing session size

represents a subsequence of the sequence space. The au-
thors do not describe how objects are discovered by the re-
ceivers in the event of a loss. This scheme appears to be
inflexible for general applications like file-system multicas-
ting. It is also unclear how to map objects into OIDs.

8 Status and Future Work
SAP has been implemented and evaluated in the network

simulator ns version 2 [18]. We plan to move the gener-
alized naming scheme and the SAP protocol into the ex-
isting SRM implementation in the MASH shell [17]. We
also plan to use it to develop real world applications such
as MediaBoard [20], WebCast [14], and floor control ap-
plications. The real challenge to using ALF is in designing
the right programming interface. Experience with building
the vast suite of multimedia and file transfer-type applica-
tions that are within the scope of the MASH project can be
invaluable in designing the right API. We see this scheme
is a key enabler of the ALF or framework approach where
code and protocol machinery can be re-used across many
applications, while still retaining flexibility and customiz-
ability.

Other areas for exploration are generic and application-
specific policies in selecting information transmitted in
state update messages. The heuristic of sending the most
active k containers is well-suited to shared whiteboards and
file system mirroring applications.

9 Implementation Notes
We have charted out a scheme for implementing SAP in

the SRM toolkit in mash. The packet formats for the vari-
ous additional packets are shown in the figures below. By
mapping each child node at a level onto a sequence number,

7

0

5

10

15

20

0 2 4 6 8 10

A
ve

ra
ge

 ti
m

e
to

 r
ec

ov
er

 (
se

co
nd

s)

State Update Period (seconds)

Short circuit to improve recovery time

Average sluggishness
Improved average convergence time

Figure 9: Performance improvement with the short circuit
heuristic

. . .
last_

last_

last_

last_

Figure 10: Trie implementation of hierarchical data

we make the mechanism for SAP queries the same as the
mechanism for repair requests. The data structure now re-
sembles a trie, shown in Figure 10. This modification leads
to a common structure for both request and query mes-
sages. We also plan to implement variable length sequence
numbers for long-lived sessions with huge amounts of data.
Other factors that affect the implementation of generalized
naming are interactions with SRM archiving agents. We
plan to explore this topic with recent experience gained in
developing a prototype recorder for SRM streams [4].

10 Summary and Conclusions
In this paper, we motivated the need for structured data

name spaces, and proposed a heirarchical scheme for data
naming. Hierarchical data naming that mirrors application
data names can introduce a high overhead if these names
are transmitted with every transmission unit. In order to

V (2) U

7 31

container ID (16)

15

timestamp (32)

P type (4) reserved (8)

start sequence (16) length (16)

Data

Figure 11: SRM DATA Packets

V (2) U

7 31

container ID (16)

15

timestamp (32)

P type (4) reserved (8)

start sequence (16) length (16)

Data

Figure 12: QUERY/REQUEST Packets

timestamp (32)

V (2) U

7 3115

P type (4) reserved (8)

start sequence (16) end sequence (16)

container name length (16)

variable length container name

Figure 13: UPDATE Packets

timestamp (32)

V (2) U

7 3115

P type (4) reserved (8) container ID (16)

container name length (16) container name ...

... container name

Figure 14: Bind Packets

8

overcome this, we propose a mapping scheme from name to
fixed length integer. We applied the general naming scheme
to reliable multicast and extend SRM with a state annouce-
ment protocol to discover and recover from losses in hierar-
chical name spaces. We used simulations to study the per-
formance impact of such a scheme and find that the proto-
col scales well to large group sizes. With multiple sources,
each source consumes its fraction of the control bandwidth
for state announcements. Alternatives to equal sharing in-
volve voting based on receiver interest [1]. Hierarchical
naming provides a framework for hierarchical rate-control
among the different containers and internal nodes of the hi-
erarchy.

Work on scaling control traffic to extremely large ses-
sions by limiting its scope has received considerable atten-
tion in the recent past. Any solution proposed for local re-
covery can be used profitably in the SAP protocol. Report-
ing only a summary of the messages heard in a local area
to “higher-ups” in the multicast distribution tree can reduce
the amount of redundant traffic generated by global multi-
cast.

One possible implementation of containers is by us-
ing multiple multicast groups (MMGs) by mapping a few
containers to a single multicast channel. MMGs facilitate
receiver-driven reception of selected containers. SAP can
be used to discover the mapping and also detect lost con-
tainers. MMGs are merely a different way of implementing
hierarchical data, and do not solve the problem of discov-
ering the structure of the hierarchy.

11 Acknowledgements
We would like to thank Hari Balakrishnan and Teck-Lee

Tung for suggestions that greatly improved the quality of
this work.

References
[1] AMIR, E. Private communication, Jan. 1997.

[2] BALAKRISHNAN, H., SESHAN, S., AMIR, E., AND

.KATZ, R. H. Improving the performance of TCP over wire-
less links. In Proceedings of MobiCom (Dec. 1995).

[3] BRADEN, R. T/TCP – TCP Extensions for Transactions
Functional Specification. ARPANET Working Group Re-
quests for Comment, DDN Network Information Center,
ISI, 1994. RFC-1664.

[4] CHAWATHE, Y., AND WANG, H. J. A recorder for media-
board streams. UCB CS 286 Project Report, May 1997.

[5] CKER CHIUEH, T. Distributed systems support for net-
worked games. In Proceedings of SPIE First International
Symposium on Technologies and Systems for Voice, Video,
and Data Communications (Oct. 1995).

[6] CLARK, D. Structuring operating systems using upcalls. In
Proceedings of the Eleventh Symposium on Operating Sys-
tems Principles (Dec. 1991).

[7] CLARK, D. D., AND TENNENHOUSE, D. L. Architectural
considerations for a new generation of protocols. In Pro-
ceedings of SIGCOMM ’90 (Philadelphia, PA, Sept. 1990),
ACM.

[8] CROWCROFT, J., WANG, Z., GHOSH, A., AND DIOT, C.
Rmfp: A reliable multicast framing protocol, Mar. 1997. In-
ternet Draft (RFC pending).

[9] DEERING, S. E. Multicast Routing in a Datagram Internet-
work. PhD thesis, Stanford University, Dec. 1991.

[10] ERIKSSON, H. Mbone: The multicast backbone. Commu-
nications of the ACM 37, 8 (1994), 54–60.

[11] FLOYD, S., AND JACOBSON, V. The synchronization of
periodic routing messages. In Proceedings of SIGCOMM
’93 (San Francisco, CA, Sept. 1993), ACM, pp. 33–44.

[12] FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C.-G.,
AND ZHANG, L. A reliable multicast framework for light-
weight sessions and application level framing. In Proceed-
ings of SIGCOMM ’95 (Boston, MA, Sept. 1995), ACM,
pp. 342–356.

[13] INC., P. PointCast Home Page. Software on-line5 .

[14] LIAO, T., ET AL. WebCanal - Broadcastof Web Documents.
INRIA, France. Software on-line6.

[15] LIN, J. C., AND PAUL, S. RMTP: A reliable multicast
transport protocol. In Proceedings IEEE Infocom ’96 (San
Francisco, CA, Mar. 1996), pp. 1414–1424.

[16] MCCANNE, S. A distributed whiteboard for network con-
ferencing, May 1992. U.C. Berkeley CS268 Computer Net-
works term project and paper.

[17] MCCANNE, S., ET AL. Towards a common infrastruc-
ture for multimedia-networking middleware. In Proceed-
ings of the Seventh International Workshop on Network and
OS Support for Digital Audio and Video (St. Louis, CA, May
1997), ACM.

[18] MCCANNE, S., AND FLOYD, S. The LBNL Network Sim-
ulator. Lawrence Berkeley Laboratory. Software on-line7.

[19] OUSTERHOUT, J. K. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[20] RAMAN, S., AND TUNG, T.-L. A distributed mediaboard
using the scalable, reliable multicast toolkit. UCB CS 262
Project Report, Dec. 1996.

[21] RIVEST, R. The MD5 Message-Digest
Algorithm. ARPANET Working Group Requests for Com-
ment, DDN Network Information Center, MIT Laboratory
for Computer Science and RSA Data Security, Inc., 1992.
RFC-1321.

[22] SMITH, W. G., AND KOIFMAN, A. A distributed interac-
tive simulation intranet using ramp, a reliable adaptive mul-
ticast protocol. In Proceedings of the Fourteenth Workshop
on Standards for the Interoperability of Distributed Simula-
tions, Orlando, FL (Mar. 1996).

5http://www.pointcast.com
6http://monet.inria.fr
7http://www-nrg.ee.lbl.gov/ns/

9

[23] STEVENS, W. R. TCP/IP Illustrated, Volume 1 – The Pro-
tocols, first ed. Addison-Wesley, Dec. 1994.

[24] VAN RENESSE, R., BIRMAN, K. P., AND MAFFEIS, S. Ho-
rus, a flexible Group Communication System. Communica-
tions of the ACM, 4 (1996).

[25] WETHERALL, D., AND LINDBLAD, C. J. Extending tcl for
dynamic object-oriented programming. In Proceedings of
the Tcl/Tk Workshop ’95 (Toronto, July 1995).

10

